Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Protein Sci ; 33(5): e4987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607188

RESUMO

High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/genética , Membranas Artificiais , Colesterol/metabolismo , Fosfolipídeos
2.
Front Endocrinol (Lausanne) ; 15: 1345267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586463

RESUMO

Background: Carotid Intima-Media Thickness (CIMT) is a key marker for atherosclerosis, with its modulation being crucial for cardiovascular disease (CVD) risk assessment. While thyroid function's impact on cardiovascular health is recognized, the causal relationship and underlying mechanisms influencing CIMT remain to be elucidated. Methods: In this study, Mendelian Randomization (MR) was employed to assess the causal relationship between thyroid function and CIMT. Thyroid hormone data were sourced from the Thyroidomics Consortium, while lipid traits and CIMT measurements were obtained from the UK Biobank. The primary analysis method was a two-sample MR using multiplicative random effects inverse variance weighting (IVW-MRE). Additionally, the study explored the influence of thyroid hormones on lipid profiles and assessed their potential mediating role in the thyroid function-CIMT relationship through multivariate MR analysis. Results: The study revealed that lower levels of Free Thyroxine (FT4) within the normal range are significantly associated with increased CIMT. This association was not observed with free triiodothyronine (FT3), thyroid-stimulating hormone (TSH), or TPOAb. Additionally, mediation analysis suggested that apolipoprotein A-I and B are involved in the relationship between thyroid function and CIMT. The findings indicate a potential U-shaped curve relationship between FT4 levels and CIMT, with thyroid hormone supplementation in hypothyroid patients showing benefits in reducing CIMT. Conclusion: This research establishes a causal link between thyroid function and CIMT using MR methods, underscoring the importance of monitoring thyroid function for early cardiovascular risk assessment. The results advocate for the consideration of thyroid hormone supplementation in hypothyroid patients as a strategy to mitigate the risk of carotid atherosclerosis. These insights pave the way for more targeted approaches in managing patients with thyroid dysfunction to prevent cardiovascular complications.


Assuntos
Espessura Intima-Media Carotídea , Hipotireoidismo , Humanos , Análise da Randomização Mendeliana , Hipotireoidismo/genética , Hipotireoidismo/complicações , Hormônios Tireóideos , Apolipoproteínas
3.
Adv Biomed Res ; 13: 16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525390

RESUMO

Background: Neurons need a high amount of cholesterol to maintain the stability of their membrane-rich structures. Astrocytes synthesize and distribute cholesterol to neurons, and ABCA1 is a key mediator of cholesterol efflux to generate HDL for cholesterol transport in the brain. Several studies imply the effect of aspirin on ABCA1 expression in peripheral cells such as macrophages. Here, we compared the effect of aspirin with apoA-I on ABCA1 protein expression and cholesterol efflux in human astrocytes. Materials and Methods: Human astrocytes were cultured, and the effects of aspirin on the expression and protein levels of ABCA1 were investigated through RT-PCR and Western blot analysis. Additionally, the effect of co-treatment with apoA-I and aspirin on ABCA1 protein level and cholesterol efflux was evaluated. Results: Dose and time-course experiments showed that the maximum effect of aspirin on ABCA1 expression occurred at a concentration of 0.5 mM after 12 h of incubation. RT-PCR and western blot data showed that aspirin upregulates ABCA1 expression by up to 4.7-fold and its protein level by 67%. Additionally, co-treatment with aspirin and apoA-I increased cholesterol release from astrocytes, indicating an additive effect of aspirin on apoAI-mediated cholesterol efflux. Conclusions: The results suggest a potential role of aspirin in increasing ABCA1 expression and cholesterol efflux in astrocytes, similar to the effect of apoA-I. This indicates that aspirin could potentially regulate brain cholesterol balance and can be considered in certain neurological diseases, in particular in some neurological disorders related to cholesterol accumulation such as Alzheimer's disease.

4.
Front Med (Lausanne) ; 11: 1357659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510452

RESUMO

Introduction: The new coronavirus disease, COVID-19, poses complex challenges exacerbated by several factors, with respiratory tissue lesions being notably significant among them. Consequently, there is a pressing need to identify informative biological markers that can indicate the severity of the disease. Several studies have highlighted the involvement of proteins such as APOA1, XPNPEP2, ORP150, CUBN, HCII, and CREB3L3 in these respiratory tissue lesions. However, there is a lack of information regarding antibodies to these proteins in the human body, which could potentially serve as valuable diagnostic markers for COVID-19. Simultaneously, it is relevant to select biological fluids that can be obtained without invasive procedures. Urine is one such fluid, but its effect on clinical laboratory analysis is not yet fully understood due to lack of study on its composition. Methods: Methods used in this study are as follows: total serum protein analysis; ELISA on moderate and severe COVID-19 patients' serum and urine; bioinformatic methods: ROC analysis, PCA, SVM. Results and discussion: The levels of antiAPOA1, antiXPNPEP2, antiORP150, antiCUBN, antiHCII, and antiCREB3L3 exhibit gradual fluctuations ranging from moderate to severe in both the serum and urine of COVID-19 patients. However, the diagnostic value of individual anti-protein antibodies is low, in both blood serum and urine. On the contrary, joint detection of these antibodies in patients' serum significantly increases the diagnostic value as demonstrated by the results of principal component analysis (PCA) and support vector machine (SVM). The non-linear regression model achieved an accuracy of 0.833. Furthermore, PCA aided in identifying serum protein markers that have the greatest impact on patient group discrimination. The study revealed that serum serves as a superior analyte for describing protein quantification due to its consistent composition and lack of organic salts and drug residues, which can otherwise affect protein stability.

5.
J Korean Med Sci ; 39(6): e51, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374625

RESUMO

BACKGROUND: Lung dysfunction and high apolipoprotein B/apolipoprotein A-I (apoB/apoA-I) ratio are both recognized risk factors for cardiovascular disease. However, few studies have examined the association between the apoB/ApoA-I ratio and lung function. Therefore, we investigated whether this ratio is associated with decreased lung function in a large healthy cohort. METHODS: We performed a cohort study on 68,418 healthy Koreans (34,797 males, mean age: 38.1 years) who underwent a health examination in 2019. ApoB/apoA-I ratio was categorized into quartiles. Spirometric values at the fifth percentile in our population were considered the lower limit of normal (LLN), which was used to define lung function impairment. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs), using the lowest quartile as the reference, were estimated to determine lung function impairment. RESULTS: Mean apoB/apoA-I ratio was 0.67 ± 0.21. Subjects with the highest quartile of this ratio had the lowest predicted forced expiratory volume in one second (FEV1%) and forced vital capacity (FVC%) after controlling for covariates (P < 0.001). However, FEV1/FVC ratio was not significantly different among the four quartiles (P = 0.059). Compared with the lowest quartile (Q1, reference), the aORs (95% CI) for FEV1% < LLN across increasing quartiles (from Q2 to Q4) were 1.216 (1.094-1.351), 1.293 (1.156-1.448), and 1.481 (1.311-1.672) (P for trend < 0.001), respectively. Similarly, the aORs for FVC% < LLN compared with the reference were 1.212 (1.090-1.348), 1.283 (1.147-1.436), and 1.502 (1.331-1.695) with increasing quartiles (P for trend < 0.001). However, the aORs for FEV1/FVC < LLN were not significantly different among groups (P for trend = 0.273). CONCLUSION: High apoB/apoA-I ratio was associated with decreased lung function. However, longitudinal follow-up studies are required to validate our findings.


Assuntos
Apolipoproteína A-I , Pneumopatias , Adulto , Humanos , Masculino , Apolipoproteínas B , Estudos de Coortes , Volume Expiratório Forçado , Pulmão/patologia , Espirometria , Capacidade Vital , Pneumopatias/sangue , Pneumopatias/diagnóstico
6.
J Control Release ; 368: 42-51, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365180

RESUMO

Protein corona has long been a source of concern, as it might impair the targeting efficacy of targeted drug delivery systems. However, engineered up-regulating the adsorption of certain functional serum proteins could provide nanoparticles with specific targeting drug delivery capacity. Herein, apolipoprotein A-I absorption increased nanoparticles (SPC-PLGA NPs), composed with the Food and Drug Administration approved intravenously injectable soybean phosphatidylcholine (SPC) and poly (DL-lactide-co-glycolide) (PLGA), were fabricated for enhanced glioma targeting. Due to the high affinity of SPC and apolipoprotein A-I, the percentage of apolipoprotein A-I in the protein corona of SPC-PLGA NPs was 2.19-fold higher than that of nanoparticles without SPC, which made SPC-PLGA NPs have superior glioma targeting ability through binding to scavenger receptor class BI on blood-brain barrier and glioma cells both in vitro and in vivo. SPC-PLGA NPs loaded with paclitaxel could effectively reduce glioma invasion and prolong the survival time of glioma-bearing mice. In conclusion, we provided a good example of the direction of achieving targeting drug delivery based on protein corona regulation.


Assuntos
Glioma , Nanopartículas , Coroa de Proteína , Camundongos , Animais , Apolipoproteína A-I , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Paclitaxel/uso terapêutico , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico
7.
Am J Physiol Heart Circ Physiol ; 326(4): H916-H922, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334968

RESUMO

Prior animal and cell studies have demonstrated a direct role of high-density lipoprotein (HDL) and apolipoprotein A-I (ApoA-I) in enhancing skeletal muscle mitochondrial function and exercise capacity. However, the relevance of these animal and cell investigations in humans remains unknown. Therefore, a cross-sectional study was conducted in 48 adults (67% female, 8% Black participants, age 39 ± 15.4 yr old) to characterize the associations between HDL measures, ApoA-I, and muscle mitochondrial function. Forearm muscle oxygen recovery time (tau) from postexercise recovery kinetics was used to assess skeletal muscle mitochondrial function. Lipoprotein measures were assessed by nuclear magnetic resonance. HDL efflux capacity was assessed using J774 macrophages, radiolabeled cholesterol, and apolipoprotein B-depleted plasma both with and without added cyclic adenosine monophosphate. In univariate analyses, faster skeletal muscle oxygen recovery time (lower tau) was significantly associated with higher levels of HDL cholesterol (HDL-C), ApoA-I, and larger mean HDL size, but not HDL cholesterol efflux capacity. Slower recovery time (higher tau) was positively associated with body mass index (BMI) and fasting plasma glucose (FPG). In multivariable linear regression analyses, higher levels of HDL-C and ApoA-I, as well as larger HDL size, were independently associated with faster skeletal muscle oxygen recovery times that persisted after adjusting for BMI and FPG (all P < 0.05). In conclusion, higher levels of HDL-C, ApoA-I, and larger mean HDL size were independently associated with enhanced skeletal muscle mitochondrial function in healthy humans.NEW & NOTEWORTHY Our study provides the first direct evidence supporting the beneficial role of HDL-C and ApoA-I on enhanced skeletal muscle mitochondrial function in healthy young to middle-aged humans without cardiometabolic disease.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Adulto , Pessoa de Meia-Idade , Animais , Humanos , Feminino , Adulto Jovem , Masculino , Estudos Transversais , HDL-Colesterol , Músculo Esquelético , Mitocôndrias , Oxigênio
8.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399381

RESUMO

CIGB-258 is a 3 kDa altered peptide ligand from heat shock protein (HSP) 60 that exhibits anti-inflammatory activity against the acute toxicity of carboxymethyllysine (CML) with antioxidant and anti-glycation activities via protection of high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I). It is necessary to test a synergistic interaction between apoA-I and CIGB-258 in reconstituted high-density lipoproteins (rHDL). Several rHDLs were synthesized containing palmitoyloleoyl phosphatidylcholine (POPC), cholesterol, apoA-I, and CIGB-258 at molar ratios of 95:5:1:0, 95:5:1:0.1, 95:5:1:0.5, and 95:5:1:1 for rHDL-(1:0), rHDL-(1:0.1), rHDL-(1:0.5), and rHDL-(1:1), respectively. As the CIGB-258 content in rHDL was increased, the particle size of rHDL was 1.4-times higher than rHDL-(1:0) to rHDL-(1:1), from 60 nm to 83 nm, respectively. As the CIGB-258 content was increased, the rHDL showed the most resistance to isothermal denaturation by a urea treatment, and rHDL-(1:1) exhibited the highest structural stability and the strongest antioxidant ability against LDL oxidation. Co-treatment of rHDL-(1:0), rHDL-(1:0.5), and rHDL-(1:1) resulted in up to 10%, 24%, and 34% inhibition of HDL glycation, inhibition of HDL glycation, which was caused by the CML, with protection of apoA-I. Microinjection of each rHDL into zebrafish embryos in the presence of CML showed that a higher CIGB-258 content in rHDL was associated with higher survivability with the least inflammation and apoptosis. Furthermore, an intraperitoneal injection of rHDL and CML showed that a higher CIGB-258 content in rHDL was also associated with higher survivability of zebrafish and faster recovery of swimming ability. The rHDL-(1:1) group showed the lowest triglyceride, AST, and ALT serum levels with the least production of interleukin-6, oxidized product, and neutrophil infiltration in hepatic tissue. In conclusion, CIGB-258 could bind well to phospholipids and cholesterol to stabilize apoA-I in the rHDL structure against denaturation stress and larger particle sizes. The rHDL containing CIGB-258 enhanced the in vitro antioxidant ability against LDL oxidation, the anti-glycation activity to protect HDL, and the in vivo anti-inflammatory activity against CML toxicity in zebrafish adults and embryos. Overall, incorporating apoA-I and CIGB-258 in rHDL resulted in a synergistic interaction to enhance the structural and functional correlations in a dose-dependent manner of CIGB-258.

9.
J Asthma Allergy ; 17: 89-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370533

RESUMO

Purpose: Eosinophils have pivotal roles in the development of allergic rhinitis (AR) through the release of cytotoxic substances. Apolipoprotein A-I (Apo-AI) exhibits a strong inhibitory effect on eosinophil infiltration in allergic diseases. Nevertheless, the precise impact of Apolipoprotein A-I on eosinophils remains uncertain. Methods: Our study recruited a total of 15 AR children and 15 controls. The correlation between Apo-AI expression and the counts of blood eosinophils was examined. Flow cytometry was employed to assess the role of Apo-AI in eosinophil apoptosis and adhesion. The Transwell system was performed to conduct the migration assay. An animal model using AR mice was established to test the effect of Apo-AI on eosinophils. Results: Serum Apo-AI were negatively related to eosinophils counts and eosinophil chemotactic protein levels in AR. Apo-AI exerts a pro-apoptotic effect while also impeding the processes of adhesion, migration, and activation of eosinophils. The apoptosis triggered by Apo-AI was facilitated through the phosphoinositide 3-kinase (PI3K) pathway. The chemotaxis and activation of eosinophils, which are influenced by Apolipoprotein A-I, are regulated through the PI3K and MAPK signaling pathways. Apo-AI treated mice presented with decreased blood and nasal eosinophilic inflammation as well as down-regulated eosinophil related cytokines. Conclusion: Our findings provide confirmation that Apo-AI exhibits inhibitory effects on the function of eosinophils in allergic rhinitis. This suggests that Apo-AI holds potential as a therapeutic target for future treatment strategies.

10.
J Allergy Clin Immunol Glob ; 3(2): 100212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38371899

RESUMO

Background: Group 2 innate lymphoid cells (ILC2s) have been found to take part in type 2 inflammation by secreting TH2 cytokines. Apolipoprotein A-I (Apo-AI), a major structural and functional protein of high-density lipoproteins, has anti-inflammatory effects on neutrophils, monocytes, macrophages, and eosinophils. However, its effects on ILC2s are not well characterized. Objective: We aimed to investigate the effect of Apo-AI on the proliferation and function of ILC2s as well as its possible mechanism. Methods: The protein expression of Apo-AI and the percentage of ILC2s in peripheral blood between 20 allergic rhinitis patients and 20 controls were detected by ELISA and flow cytometry. The effect of Apo-AI and miR-155 on ILC2 proliferation and function was detected by tritiated thymidine incorporation and ELISA. Anima models were adopted to verify the effect of Apo-AI in vivo. Results: Elevated expression of Apo-AI was observed in allergic rhinitis patients. Apo-AI promotes ABCA1 expression by ILC2s, which can be inhibited by anti-Apo-AI. Apo-AI decreased ILC2 proliferation and the microRNA levels of GATA3 and RORα from ILC2s. The miR-155 overexpression promoted the upregulation of GATA3 and type II cytokines from ILC2s, while the addition of Apo-AI or miR-155 inhibitor significantly inhibited expression of GATA3 and type II cytokines by ILC2s. Apo-AI-/- mice showed as enhanced allergen-induced airway inflammation. The miR-155 inhibitor can reverse the enhanced allergen-induced airway inflammation in Apo-AI-/- mice, while miR-155 mimics can reverse the decreased allergen-induced airway inflammation in Apo-AI-treated mice. Conclusion: Apo-AI suppressed the proliferation and function of ILC2s through miR-155 in allergic rhinitis. Our data provide new insights into the mechanism of allergen-induced airway inflammation.

11.
J Control Release ; 367: 27-44, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215984

RESUMO

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Assuntos
Doença de Huntington , Oligonucleotídeos Antissenso , Camundongos , Animais , Oligonucleotídeos Antissenso/uso terapêutico , Apolipoproteína A-I/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapêutico , Modelos Animais de Doenças
12.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276005

RESUMO

Obesity and overweight, frequently caused by a lack of exercise, are associated with many metabolic diseases, such as hypertension, diabetes, and dyslipidemia. Aerobic exercise effectively increases the high-density lipoproteins-cholesterol (HDL-C) levels and alleviates the triglyceride (TG) levels. The consumption of Cuban policosanol (Raydel®) is also effective in enhancing the HDL-C quantity and HDL functionality to treat dyslipidemia and hypertension. On the other hand, no study has examined the effects of a combination of high-intensity exercise and policosanol consumption in obese subjects to improve metabolic disorders. In the current study, 17 obese subjects (average BMI 30.1 ± 1.1 kg/m2, eight male and nine female) were recruited to participate in a program combining exercise and policosanol (20 mg) consumption for 12 weeks. After completion, their BMI, waist circumference, total fat mass, systolic blood pressure (SBP), and diastolic blood pressure (DBP) reduced significantly up to around -15%, -13%, -33%, -11%, and -13%, respectively. In the serum lipid profile, at Week 12, a significant reduction was observed in the total cholesterol (TC) and triglyceride (TG) levels, up to -17% and -54% from the baseline, respectively. The serum HDL-C was elevated by approximately +12% from the baseline, as well as the percentage of HDL-C in TC, and HDL-C/TC (%), was enhanced by up to +32% at Week 12. The serum coenzyme Q10 (CoQ10) level was increased 1.2-fold from the baseline in all participants at Week 12. In particular, the male participants exhibited a 1.4-fold increase from the baseline. The larger rise in serum CoQ10 was correlated with the larger increase in the serum HDL-C (r = 0.621, p = 0.018). The hepatic function parameters were improved; the serum γ-glutamyl transferase decreased at Week 12 by up to -55% (p < 0.007), while the aspartate aminotransferase and alanine transaminase levels diminished within the normal range. In the lipoprotein level, the extent of oxidation and glycation were reduced significantly with the reduction in TG content. The antioxidant abilities of HDL, such as paraoxonase (PON) and ferric ion reduction ability (FRA), were enhanced significantly by up to 1.8-fold and 1.6-fold at Week 12. The particle size and number of HDL were elevated up to +10% during the 12 weeks, with a remarkable decline in the TG content, glycation extent, and oxidation. The improvements in HDL quality and functionality were linked to the higher survivability of adult zebrafish and their embryos, under the co-presence of carboxymethyllysine (CML), a pro-inflammatory molecule known to cause acute death. In conclusion, 12 weeks of Cuban policosanol (Raydel®, 20 mg) consumption with high-intensity exercise displayed a significant improvement in blood pressure, body fat mass, blood lipid profile without liver damage, CoQ10 metabolism, and renal impairment.

13.
J Clin Endocrinol Metab ; 109(2): 321-332, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37437107

RESUMO

High-density lipoprotein (HDL) contributes to reverse cholesterol transport, which is 1 of the main explanations for the described inverse association between HDL-cholesterol (HDL-C) and atherosclerotic cardiovascular disease (ASCVD) risk. However, efforts to therapeutically raise HDL-C levels with niacin, fibrates, or cholesteryl ester transfer protein inhibitors have not demonstrated a reduction in ASCVD events when compared with placebo among individuals treated with statins. Furthermore, mendelian randomization studies suggest that HDL-C is unlikely to be a direct biologic variable impacting ASCVD risk. More recently, observations from well-conducted epidemiologic studies have indicated a nonlinear U-shaped relationship between HDL-C and subclinical atherosclerosis, and that very high HDL-C (≥80 mg/dL in men, ≥100 mg/dL in women) is paradoxically associated with higher all-cause and ASCVD-related mortality. These observations suggest that HDL-C is not a universal protective factor for atherosclerosis. Thus, there are several opportunities for reframing the contribution of HDL-C to ASCVD risk and related clinical calculators. Here, we examine our growing understanding of HDL-C and its role in ASCVD risk assessment, treatment, and prevention. We discuss the biological functions of HDL-C and its normative values in relation to demographics and lifestyle markers. We then summarize original studies that observed a protective association between HDL-C and ASCVD risk and more recent evidence indicating an elevated ASCVD risk at very high HDL-C levels. Through this process, we advance the discussion regarding the future role of HDL-C in ASCVD risk assessment and identify knowledge gaps pertaining to the precise role of HDL-C in atherosclerosis and clinical ASCVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Masculino , Feminino , Humanos , HDL-Colesterol , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/complicações , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipoproteínas HDL , Aterosclerose/etiologia , Fatores de Risco
14.
Antivir Ther ; 28(6): 13596535231219639, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037795

RESUMO

BACKGROUND: Previously, we have demonstrated that Apolipoprotein A-I (ApoA-I) could inhibit the secretion of Hepatitis B virus (HBV), suggesting that stimulation of ApoA-I may block particle production. In the present study, we evaluated the anti-HBV effect of RVX-208, a small-molecule stimulator of ApoA-I gene expression. METHODS: RVX-208 was used to treat HepG2.2.15 cell, a HepG2 derived cell line stably producing HBV virus. Real-time PCR was performed to examine the HBV DNA levels. Magnetic particles, which were coated with anti-HBS or anti-HBE antibody, were used to examine the HBsAg and HBeAg levels in the supernatant of cultured HepG2.2.15 cells in combination with the enzyme conjugates that were prepared with horseradish peroxidase labelled anti-HBS or anti-HBE antibody in a double antibody sandwich manner. RNA-seq, immunoblots and real-time PCR were used to analyze the functional mechanism of RVX-208. RESULTS: RVX-208 could elevate the ApoA-I protein levels in HepG2.2.15 cells. In the meantime, RVX-208 significantly repressed HBV DNA, HBsAg and HBeAg levels in the supernatants of HepG2.2.15 cells. RNA-seq data revealed that RVX-208 treatment not only affected the cholesterol metabolism, which is closely related to ApoA-I, but also regulated signalling pathways that are associated with antiviral immune response. Moreover, mechanistic studies demonstrated that RVX-208 could activate cGAS-STING pathway and upregulate the transcription of a series of interferons, pro-inflammatory cytokines and chemokines with antiviral potential that are at the downstream of cGAS-STING pathway. CONCLUSION: Our study demonstrated that RVX-208, an inducer of ApoA-I, could suppress HBV particle production through activation of cGAS-STING pathway.


Assuntos
Apolipoproteína A-I , Vírus da Hepatite B , Humanos , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Antígenos de Superfície da Hepatite B , DNA Viral , Antígenos E da Hepatite B , Células Hep G2 , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/farmacologia
15.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138504

RESUMO

Recombinant human interferon alpha-2b (rIFN) is widely used in antiviral and anticancer immunotherapy. However, the high efficiency of interferon therapy is accompanied by a number of side effects; this problem requires the design of a new class of interferon molecules with reduced cytotoxicity. In this work, IFN was modified via genetic engineering methods by merging it with the blood plasma protein apolipoprotein A-I in order to reduce acute toxicity and improve the pharmacokinetics of IFN. The chimeric protein was obtained via biosynthesis in the yeast P. pastoris. The yield of ryIFN-ApoA-I protein when cultivated on a shaker in flasks was 30 mg/L; protein purification was carried out using reverse-phase chromatography to a purity of 95-97%. The chimeric protein demonstrated complete preservation of the biological activity of IFN in the model of vesicular stomatitis virus and SARS-CoV-2. In addition, the chimeric form had reduced cytotoxicity towards Vero cells and increased cell viability under viral load conditions compared with commercial IFN-a2b preparations. Analysis of the pharmacokinetic profile of ryIFN-ApoA-I after a single subcutaneous injection in mice showed a 1.8-fold increased half-life of the chimeric protein compared with ryIFN.


Assuntos
Apolipoproteínas A , Interferon-alfa , Chlorocebus aethiops , Humanos , Camundongos , Animais , Interferon-alfa/genética , Interferon-alfa/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/química , Apolipoproteína A-I/genética , Células Vero , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Interferon alfa-2
16.
Arch Biochem Biophys ; 750: 109805, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37913855

RESUMO

BACKGROUND: The extracellular matrix (ECM) is a complex tridimensional scaffold that actively participates in physiological and pathological events. The objective of this study was to test whether structural proteins of the ECM and glycosaminoglycans (GAGs) may favor the retention of human apolipoprotein A-I (apoA-I) variants associated with amyloidosis and atherosclerosis. METHODS: Biopolymeric matrices containing collagen type I (Col, a main macromolecular component of the ECM) with or without heparin (Hep, a model of GAGs) were constructed and characterized, and used to compare the binding of apoA-I having the native sequence (Wt) or Arg173Pro, a natural variant inducing cardiac amyloidosis. Protein binding was observed by fluorescence microscopy and unbound proteins quantified by a colorimetric assay. RESULTS: Both, Wt and Arg173Pro bound to the scaffolds containing Col, but the presence of Hep diminished the binding efficiency. Col-Hep matrices retained Arg173Pro more than the Wt. The retained protein was only partially removed from the matrices with saline solutions, indicating that electrostatic interactions may occur but are not the main driving force. Using in addition thermodynamic molecular simulations and size exclusion chromatography approaches, we suggest that the binding of apoA-I variants to the biopolymeric matrices is driven by many low affinity interactions. CONCLUSIONS: Under this scenario Col-Hep scaffolds contribute to the binding of Arg173Pro, as a cooperative platform which could modify the native protein conformation affecting protein folding. GENERAL SIGNIFICANCE: We show that the composition of the ECM is key to the protein retention, and well characterized biosynthetic matrices offer an invaluable in vitro model to mimic the hallmark of pathologies with interstitial infiltration such as cardiac amyloidosis.


Assuntos
Amiloidose , Heparina , Humanos , Amiloidose/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/química , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Heparina/metabolismo
17.
Exp Cell Res ; 433(1): 113826, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37858836

RESUMO

The phenotype of individuals carrying the apolipoprotein A-IMilano (apoA-IM), the mutant form of human apoA-I (apoA-I), is characterized by very low concentrations of HDL and apoA-I, and hypertriglyceridemia. Paradoxically, these subjects are not found to be at increased risk of premature cardiovascular disease compared to controls. Besides, various in vitro and in vivo studies have demonstrated that apoA-IM possesses greater anti-atherosclerotic activity compared to apoA-I. The molecular mechanisms explaining the apoA-IM carrier's phenotype and the apoA-IM higher efficacy are still not fully elucidated. To investigate such mechanisms, we crossed previously generated apoA-I (A-I k-in) or apoA-IM knock-in mice (A-IM k-in) with transgenic mice expressing human apoA-II but lacking murine apoA-I (hA-II) to generate hA-II/A-I k-in, and hA-II/A-IM k-in, respectively. These genetically modified mice completely reproduced the apoA-IM carrier's phenotype, including hypoalphalipoproteinemia and hypertriglyceridemia. Furthermore, by using the microarray methodology, we investigated the intrinsic differences in hepatic gene expression among these k-in mouse lines. The expression of 871, 1,018, 1129 and 764 genes was significantly altered between 1) hA-II/A-I and hA-II/A-IM k-in; 2) A-IM and hA-II/A-IM k-in; 3) A-I and A-IM; 4) A-I and hA-II/A-I k-in liver samples, respectively. Bioinformatics analysis highlighted that the hepatic expression of two genes, Elovl6 and Gatm, related to fatty acid/lipid and energy metabolism, respectively, is influenced by the presence of the apoA-IM natural variant and/or apoA-II.

18.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764492

RESUMO

Reconstituted high-density lipoproteins (rHDL) containing each policosanol from Cuba (Raydel®), China (Shaanxi Pioneer), and the United States (Lesstanol®) were synthesized to compare the physiological properties of policosanol depending on sources and origin countries. After synthesis with apolipoproteinA-I (apoA-I) into rHDL, all policosanols bound well with phospholipid and apoA-I to form discoidal rHDL. An rHDL containing Cuban policosanol (rHDL-1) showed the largest rHDL particle size of around 83 ± 3 nm, while rHDL containing Chinese policosanol (rHDL-2) or American policosanol (rHDL-3) showed smaller particles around 63 ± 3 nm and 60 ± 2 nm in diameter, respectively. The rHDL-1 showed the strongest anti-glycation activity to protect the apoA-I degradation of HDL from fructose-mediated glycation: approximately 2.7-times higher ability to suppress glycation and 1.4-times higher protection ability of apoA-I than that of rHDL-2 and rHDL-3. The rHDL-1 showed the highest antioxidant ability to inhibit cupric ion-mediated LDL oxidation in electromobility and the quantification of oxidized species. A microinjection of each rHDL into a zebrafish embryo in the presence of carboxymethyllysine (CML) showed that rHDL-1 displayed the strongest anti-oxidant activity with the highest embryo survivability, whereas rHDL-2 and rHDL-3 showed much weaker protection ability, similar to rHDL alone (rHDL-0). An intraperitoneal injection of CML (250 µg) into adult zebrafish caused acute death and hyperinflammation with an elevation of infiltration of neutrophils and IL-6 production in the liver. On the other hand, a co-injection of rHDL-1 resulted in the highest survivability and the strongest anti-inflammatory ability to suppress IL-6 production with an improvement of the blood lipid profile, such as elevation of HDL-C and lowering of the total cholesterol, LDL-cholesterol, and triglyceride. In conclusion, Cuban policosanol exhibited the most desirable properties for the in vitro synthesis of rHDL with the stabilization of apoA-I, the largest particle size, anti-glycation against fructation, and antioxidant activities to prevent LDL oxidation. Cuban policosanol in rHDL also exhibited the strongest in vivo antioxidant and anti-inflammatory activities with the highest survivability in zebrafish embryos and adults via the prevention of hyperinflammation in the presence of CML.


Assuntos
Antioxidantes , Reação de Maillard , Animais , Antioxidantes/farmacologia , Peixe-Zebra , Apolipoproteína A-I , Interleucina-6 , Lipoproteínas HDL , Anti-Inflamatórios/farmacologia , Anticorpos
19.
Front Pharmacol ; 14: 1106339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576813

RESUMO

Apolipoprotein A-I (apoA-I), 90% of which is present in high-density lipoprotein (HDL), is the main constituent of HDL, has anti-inflammatory and anti-oxidant properties, and has received extensive attention in anti-atherosclerosis. Yet little is known about apoA-I 's role in peritoneal dialysis. In this study, by analyzing PD patients (n = 81), we found that decreased apoA/HDL-C ratio is significantly associated with rapid decline in peritoneal function. Further studies were performed in animal experiments to determine the ascendancy of apolipoprotein A-I mimetic peptide (D-4F) on peritoneum, we found that D-4F administration reduced peritoneal fibrosis and peritoneal endothelial mesenchymal transformation (EMT) induced by high glucose peritoneal dialysate, such as N-cadherin, Fibronectin, Vimentin, and α-smooth muscle actin (α-SMA) expression decreased. In mechanism, D-4F can significantly inhibit Smad2/3 phosphorylation, which is the major pathway leading to fibrosis. Furthermore, D-4F treatment inhibited NADPH oxidase and thiobarbituric acid reactive substances (TBARS) expression, increased the activity of certain enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Finally, treatment with D-4F inhibits the expression of interleukins-6(IL-6), Interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α). Taken together, based on the above research evidence, apoA-I and its peptide mimic may regulate the oxidative stress, TGF- ß1/Smads signaling pathway and inflammatory response to reduce peritoneal fibrosis due to peritoneal dialysis.

20.
Biochim Biophys Acta Biomembr ; 1865(8): 184201, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541644

RESUMO

Surface lipids influence the biological activities of high-density lipoproteins (HDLs) but their species-specific effects on HDL structure, dynamics, and surface interactome has remained unclear. Building upon the five-lipid species HDL models developed and characterised in previous work, representative models of the major HDL subpopulations found in human plasma containing apolipoprotein A-I (apoA-I) have been studied using molecular dynamics simulation to describe their varying degrees of surface lipidome complexity. Specifically, two additional sets of representative HDL subpopulation particles were developed, one with sphingomyelin (SM) and the other with SM, phosphatidylethanolamine, phosphatidylinositol, and ceramide in quantities reflecting average levels characterised for HDL subpopulations derived from normolipidemic patients. These lipid species were assessed in terms of HDL size, morphology, dynamics, and overall interactome. The findings reveal that the presence of a representative SM fraction marginally enhanced HDL interfacial curvature and surface monolayer rigidity, manifesting in tighter phospholipid packing and slower surface lipid dynamics relative to SM-deficient HDL models. Furthermore, the presence of SM resulted in a reduction in the solvent exposure of core lipids and cholesterol molecules, whilst also enhancing apolipoprotein conformational flexibility and its overall twisting across the HDL surface. The hydrophobicity of apoA-I-bound lipid patches and the proportion of apoA-I hydrophobic surface area is enhanced by the overall lipidation of apoA-I irrespective of lipid composition. These findings offer new insights into how the surface lipid composition of different HDL subpopulations can significantly impact the overall interactome of HDL particles, potentially influencing subpopulation-specific biological functions like lipid scavenging and receptor interactions.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Humanos , Apolipoproteína A-I/química , Lipoproteínas HDL/química , Colesterol , Fosfolipídeos/química , Apolipoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...